#include<iostream>
#include<string.h>
const int MAXN = 1e5 + 1
const int MAXM = 1e9 + 1
int list[MAXN];
int leftArray[MAXN];
int rightArray[MAXN];
//归并array[p…q]与array[q+1…r]
int merge(int* array, int start, int mid, int end)
{
// 记录逆序数量
int inversePairNum = 0;
// 左子序列起始位置
int n1 = mid - start + 1;
// 右子序列起始位置
int n2 = end - mid;
int i, j;
// 初始化数组
memset(leftArray, 0, n1 * sizeof(int));
memset(rightArray, 0, n2 * sizeof(int));
// 数组赋值
for (i = 0; i < n1; i++)
leftArray[i] = array[start + i];
for (j = 0; j < n2; j++)
rightArray[j] = array[mid + 1 + j];
leftArray[n1] = rightArray[n2] = MAXM; //避免检查每一部分是否为空
// 清零
i = j = 0;
// 归并
for (int k = start; k <= end; k++) {
if (leftArray[i] <= rightArray[j]) {
array[k] = leftArray[i];
i++;
} else {
array[k] = rightArray[j];
j++;
// 若有数字从右往左移动,记录其移动距离
inversePairNum += n1 - i;
}
}
// 返回逆序数
return inversePairNum;
}
int mergeSort(int* array, int start, int end)
{
int sum = 0;
if (start < end) {
int mid = (start + end) / 2;
sum += mergeSort(array, start, mid);
sum += mergeSort(array, mid + 1, end);
sum += merge(array, start, mid, end);
}
return sum;
}