Skip to content

归并排序#

目录#


#include<iostream>
#include<string.h>

const int MAXN = 1e5 + 1
const int MAXM = 1e9 + 1

int list[MAXN];
int leftArray[MAXN];
int rightArray[MAXN];

//归并array[p…q]与array[q+1…r]
int merge(int* array, int start, int mid, int end)
{
    // 记录逆序数量
    int inversePairNum = 0;
    // 左子序列起始位置
    int n1 = mid - start + 1;
    // 右子序列起始位置
    int n2 = end - mid;
    int i, j;
    // 初始化数组
    memset(leftArray, 0, n1 * sizeof(int));
    memset(rightArray, 0, n2 * sizeof(int));
    // 数组赋值
    for (i = 0; i < n1; i++)
        leftArray[i] = array[start + i];

    for (j = 0; j < n2; j++)
        rightArray[j] = array[mid + 1 + j];

    leftArray[n1] = rightArray[n2] = MAXM; //避免检查每一部分是否为空

    // 清零
    i = j =  0;
    // 归并
    for (int k = start; k <= end; k++) {
        if (leftArray[i] <= rightArray[j]) {
            array[k] = leftArray[i];
            i++;
        } else {
            array[k] = rightArray[j];
            j++;
            // 若有数字从右往左移动,记录其移动距离
            inversePairNum += n1 - i;
        }
    }
    // 返回逆序数
    return inversePairNum;
}

int mergeSort(int* array, int start, int end)
{
    int sum = 0;
    if (start < end) {
        int mid = (start + end) / 2;
        sum += mergeSort(array, start, mid);
        sum += mergeSort(array, mid + 1, end);
        sum += merge(array, start, mid, end);
    }
    return sum;
}

Back to top